Home
Class 12
MATHS
sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqr...

`sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))=`
(a) 0
(b) `pi/4`
(c) `pi/6`
(d) `pi/2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    RESONANCE DPP ENGLISH|Exercise All Questions|22 Videos
  • JEE MAINS

    RESONANCE DPP ENGLISH|Exercise All Questions|3433 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(-1)("cot"(sin^(-1)((2-sqrt(3))/4+cos^(-1)(sqrt(12))/4+sec^(-1)sqrt(2))))i s (a) 0 (b) pi/2 (c) pi/3 (d) none of these

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec^-1sqrt2)

The value of sin^(-1)(3/(sqrt(73)))+cos^(-1)((11)/(sqrt(146)))+cot^(-1)sqrt(3) is (A) (5pi)/(12) (B) (17pi)/(12) (C) (7pi)/(12) (D) None of these

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) pi (B) -pi/2 (C) 0 (D) 2sqrt(3)

sum_(n=1)^oo sin^-1( (sqrt(n)-(sqrt(n-1)))/(sqrt((n)(n+1)) )= (A) pi/4 (B) pi/2 (C) - pi/3 (D) pi/3