Home
Class 12
MATHS
If vec a and vec b are non-zero and no...

If ` vec a` and ` vec b` are non-zero and non-collinear vectors, then ` vec ax vec b=[ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k` ` vec adot vec b=( vec adot vec i)( vec adot hat i)( vec bdot hat j)+( vec adot hat j)` (` vec bdot hat j)` + (` vec adot hat k)( vec bdot hat k)` If ` vec u= hat a-( hat adot hat b) hat b` and ` hat v= hat ax hat b ,` then `| vec v|=| vec u|` If ` vec c= vec ax( vec ax vec b)` , then ` vec c dot vec a=0`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|15 Videos
  • MATRICES

    RESONANCE DPP ENGLISH|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

If vec a ,\ vec b ,\ are non collinear vectors, then find the value of [\ vec a\ vec b\ hat i] hat i+[\ vec a\ vec b\ hat j] hat j+[ vec a\ vec b\ hat k] hat kdot

If aa n db are nonzero non-collinear vectors, then [ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k is equal to a. vec axx vec b b. vec a+ vec b c. vec a- vec b d. vec bxx vec a

Prove that ( vec a.( vec bxx hat i)) hat i+( vec a.( vec bxx hat j)) hat j+( vec a.( vec bxx hat k)) hat k= vec axx vec b .

Find vec a +vec b if vec a = hat i - hat j and vec b =2 hat i

Prove that ( vec a.hat i)( vec axx hat i)+( vec a.j)( vec axx hat j)+( vec a. hat k)( vec axx hat k)=0.

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=5 and vec ax vec b= vec c , then vec b is equal to

If vec a= hat i- hat j and vec b=- hat j+2 hat k , find ( vec a-2 vec b)dot( vec a+ vec b)dot

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Find vec adot vec b when: vec a= hat j+2 hat k\ a n d\ vec b=2 hat i+ hat k

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

RESONANCE DPP ENGLISH-JEE MAINS-All Questions
  1. Let the centre of the parallelepiped formed by vec P A= hat i+2 hat j...

    Text Solution

    |

  2. lim(x->oo)(30+4sqrt(x)+7x^(1/3))/(2+sqrt(4x-7)+(6x-2)^(1/3) equals ...

    Text Solution

    |

  3. If vec a and vec b are non-zero and non-collinear vectors, then ve...

    Text Solution

    |

  4. Let A = MINIMUM (x^2-2x+7),x in R and B = MINIMUM ( x^2-2x+7),x in [2...

    Text Solution

    |

  5. If vec a , vec b , vec c , vec d are non-zero, non collinear vectors ...

    Text Solution

    |

  6. The solution set of x in (-pi,pi) for the inequality sin2x+1lt=cosx+2s...

    Text Solution

    |

  7. Solve the equation 12^x-56 x^2+89 x^2-56 x+12=0.

    Text Solution

    |

  8. The least integral value of ' a ' for which the graphs y=2a x+1 and y=...

    Text Solution

    |

  9. The ratio of the roots of the equation x^(2)+alphax+alpha+2=0 is 2. fi...

    Text Solution

    |

  10. If y^(2)=p(x) is a polynomial of degree 3, then 2(d)/(dx)(y^(3)(d^(2)y...

    Text Solution

    |

  11. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  12. The equation of perpendicular bisectors of the sides AB and AC of a tr...

    Text Solution

    |

  13. Solve for x :(5+2sqrt(6))^(x^2-3)+(5-2sqrt(6))^(x^2-3)=10.

    Text Solution

    |

  14. In a parallelogram as shown in the figure (a != b) Prove that the ...

    Text Solution

    |

  15. If (x1, y1)&(x2, y2) are the solutions of the equaltions, (log)(225)(x...

    Text Solution

    |

  16. If g(x)=2f(2x^(2)-3x^(2))+f(6x^(2)-4x^(3)-x), AA x in R and f''(x) gt ...

    Text Solution

    |

  17. Sum of roots of equations f(x) - g(x)=0 is (a)0 (b) 2alpha (c) -2al...

    Text Solution

    |

  18. The function f(x)=(4-x^2)/(4x-x^3) (a) discontinuous at only one poin...

    Text Solution

    |

  19. Let f(x)= x^2+2ax+b, g(x)=cx^2+2dx+1 be quadratic equation whose grap...

    Text Solution

    |

  20. Let f(x)=x^2+2a x+b ,g(x)=c x^2+2dx+1 be quadratic expressions whose g...

    Text Solution

    |