Home
Class 12
MATHS
Let A be a 3xx3 matrix satisfying A^3=...

Let `A` be a `3xx3` matrix satisfying `A^3=0` , then which of the following statement(s) are true (a)`|A^2+A+I|!=0` (b) `|A^2-A+O|=0` (c)`|A^2+A+I|=0` (d) `|A^2-A+I|!=0`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    RESONANCE DPP ENGLISH|Exercise All Questions|3433 Videos
  • RELATIONS AND FUNCTIONS XII

    RESONANCE DPP ENGLISH|Exercise All Questions|25 Videos

Similar Questions

Explore conceptually related problems

Let M be a 3xx3 matrix satisfying M^(3)=0 . Then which of the following statement(s) are true: (a) |M^(2)+M+I|ne0 (b) |M^(2)-M+I|=0 (c) |M^(2)+M+I|=0 (d) |M^(2)-M+I|ne0

Let A be a 3xx3 matrix such that A^2-5A+7I=0 then which of the statements is true

Let A be a square matrix satisfying A^2+5A+5I= 0 the inverse of A+2l is equal to

For the matrix A=[(1,1,0),(1,2,1),(2,1,0)] which of the following is correct? (A) A^3+3A^2-I=0 (B) A^3-3A^2-I=0 (C) A^3+2A^2-I=0 (D) A^3-A^2+I=0

Let A be a 3xx3 matrix such that A^2-5A+7I=0 then which of the statements is true. Statement I: A^-1 = 1/7(5I-A) Statement II: The polynomial A^3-2A^2-3A+I can be reduced to 5(A-4I) . Then:

If a 3 xx 3 square matrix satisfies A^(3) -23A - 40 I = 0, " then " A^(-1) equals

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

The statement (a+i b)<(c+i d) is true for a^2+b^2=0 (b) b^2+d^2=0 b^2+c^2=0 (d) None of these

matrix A=({:(-i,0),(0,-i):}) then A^2 =

If a matrix A is such that 3A^3 +2A^2+5A+I= 0 , then A^(-1) is equal to