Home
Class 12
MATHS
Domain of f(x)=sin^(-1)[2-4x^2], where [...

Domain of `f(x)=sin^(-1)[2-4x^2],` where [.] denotes the greatest integer function, is: `(a)[-(sqrt(3))/2,(sqrt(3))/2]-{0} ` (b) `[-(sqrt(3))/2,(sqrt(3))/2]` `(c)[-(sqrt(3))/2,(sqrt(3))/2)-{0}` (d) `(-(sqrt(3))/2,(sqrt(3))/2)-0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1}[2 - 4x^2] \), where \([.]\) denotes the greatest integer function, we need to ensure that the expression inside the sine inverse function is valid. The sine inverse function, \(\sin^{-1}(x)\), is defined for \(x\) in the interval \([-1, 1]\). ### Step-by-step Solution: 1. **Set the Inequality**: We need to find the values of \(x\) such that: \[ -1 \leq 2 - 4x^2 \leq 1 \] 2. **Solve the Left Inequality**: Start with the left part of the inequality: \[ 2 - 4x^2 \geq -1 \] Rearranging gives: \[ 4x^2 \leq 3 \quad \Rightarrow \quad x^2 \leq \frac{3}{4} \] 3. **Solve the Right Inequality**: Now, consider the right part of the inequality: \[ 2 - 4x^2 \leq 1 \] Rearranging gives: \[ 4x^2 \geq 1 \quad \Rightarrow \quad x^2 \geq \frac{1}{4} \] 4. **Combine the Results**: We now have two inequalities: \[ \frac{1}{4} \leq x^2 \leq \frac{3}{4} \] Taking square roots gives: \[ \sqrt{\frac{1}{4}} \leq |x| \leq \sqrt{\frac{3}{4}} \quad \Rightarrow \quad \frac{1}{2} \leq |x| \leq \frac{\sqrt{3}}{2} \] 5. **Express in Interval Notation**: This means: \[ -\frac{\sqrt{3}}{2} \leq x \leq -\frac{1}{2} \quad \text{or} \quad \frac{1}{2} \leq x \leq \frac{\sqrt{3}}{2} \] In interval notation, this can be expressed as: \[ x \in \left[-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, \frac{\sqrt{3}}{2}\right] \] 6. **Remove the Point where \(x = 0\)**: Since the function involves the greatest integer function, we need to exclude \(x = 0\) from the domain: \[ \text{Domain} = \left[-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, \frac{\sqrt{3}}{2}\right] - \{0\} \] ### Final Domain: Thus, the domain of \( f(x) = \sin^{-1}[2 - 4x^2] \) is: \[ \left[-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, \frac{\sqrt{3}}{2}\right] - \{0\} \] ### Answer: The correct option is (c) \([- \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}] - \{0\}\).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|15 Videos
  • MATRICES

    RESONANCE DPP ENGLISH|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greatest integer function, is (-sqrt(3/2),sqrt(3/2)) (-sqrt(3/2),-1)uu(-sqrt(5/2),sqrt(5/2)) (-sqrt(5/2),sqrt(5/2)) (-sqrt(5/2),-1)uu(1,sqrt(5/2))

The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greatest integer function, is (-sqrt(3/2),sqrt(3/2)) (-sqrt(3/2),-1)uu(-sqrt(5/2),sqrt(5/2)) (-sqrt(5/2),sqrt(5/2)) (-sqrt(5/2),-1)uu(1,sqrt(5/2))

int_0^oo[3/(x^2+1)]dx, where [.] denotes the greatest integer function, is equal to (A) sqrt2 (B) sqrt2+1 (C) 3/sqrt2 (D) infinite

The value of the integral int_0^(3/2) [x^2]dx , where [] denotes the greatest integer function, is (A) 2+sqrt(2) (B) 2-sqrt(2) (C) 4+2sqrt(2) (D) 4-2sqrt(2)

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

The rationalisation factor of sqrt(3) is (a) -sqrt(3) (b) 1/(sqrt(3)) (c) 2sqrt(3) (d) -2sqrt(3)

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

([(sqrt(2)+isqrt(3))+(sqrt(2)-isqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

Show that : (3sqrt(2)-2sqrt(3))/(3sqrt(2)+2sqrt(3))+(2sqrt(3))/(sqrt(3)-sqrt(2))=11

Rationalise the denominator of the following : (a)(2)/(3sqrt(3))" "(b)(sqrt(40))/(sqrt(3))(c )" "(3+sqrt(2))/(4sqrt(2))" "(d)(16)/(sqrt(41)-5)" "(e)(2+sqrt(3))/(2-sqrt(3))

RESONANCE DPP ENGLISH-JEE MAINS-All Questions
  1. If the quadratic equations, a x^2+2c x+b=0 and a x^2+2b x+c=0(b!=c) ha...

    Text Solution

    |

  2. If the expression cos(x - 3pi/2) + sin(3pi/2+x) + sin(32pi+x) - 18 cos...

    Text Solution

    |

  3. Domain of f(x)=sin^(-1)[2-4x^2], where [.] denotes the greatest intege...

    Text Solution

    |

  4. If 2tan^2x-5secx=1 for exactly seven distinct value of x in [0,(npi)/2...

    Text Solution

    |

  5. If sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-2)((2x)/(1...

    Text Solution

    |

  6. 1.The slope of the normal at the point with abscissa x = -2 of the gra...

    Text Solution

    |

  7. Number of points of non-differentiability of the function g(x) = [x^2...

    Text Solution

    |

  8. If ' a ' is a natural number and ' b ' a digit such that(3a+2007)^2=4b...

    Text Solution

    |

  9. Let f(x)={(sinx^2)/x x!=0 0x=0, then f^(prime)(0^+)+f^(prime)(0^-) h...

    Text Solution

    |

  10. Solve the inequality: 1<(3x^2-7x+8)/(x^2+1)lt=2

    Text Solution

    |

  11. P and Q have position vectors a and b relative to the origin O and X,Y...

    Text Solution

    |

  12. Solution set of the inequation, (x^2-5x+6)/(x^2+x+1)<0 is x in (-oo,2)...

    Text Solution

    |

  13. The vertices of a triangle are A(1,1,2),B(4,3,1)a n dC(2,3,5) . A vect...

    Text Solution

    |

  14. If the points ((a^3)/((a-1))),(((a^2-3))/((a-1))),((b^3)/(b-1)),(((b^2...

    Text Solution

    |

  15. Let f(x)= cosec 2x + cosec^(2)2 x+ cosec^(2)3 x+........+ cosec^(2)n ...

    Text Solution

    |

  16. Let ' P ' a point on the line y=3x and Q lies on 2y+x=2 and the mid-po...

    Text Solution

    |

  17. Let f(x) be a function such that its derovative f'(x) is continuous in...

    Text Solution

    |

  18. The number of positive integral solutions of, (x^2(3x-4)^3(x-2)^4)/((x...

    Text Solution

    |

  19. Let f(x)=e^(2x) and b=a+hdot If there exists a real number theta in (0...

    Text Solution

    |

  20. If 3A=[(-1,-2,-2),(2,1,-2),(x,-2,y)] such that A A^T=I, then which of ...

    Text Solution

    |