Home
Class 11
MATHS
The fundamental period of the function y...

The fundamental period of the function `y=sin^2((sqrt(2)x+3)/(6pi))` is `lambdapi^2` then the value of `lambda/(sqrt(2))` is_____

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    RESONANCE DPP ENGLISH|Exercise All Questions|10 Videos

Similar Questions

Explore conceptually related problems

The period of the function f(x)=sin((2x+3)/(6pi)) , is

lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is 4pi , then the value of a is/are

Find the fundamental period of the following function: f(x)=(sin12x)/(1+cos^(2)6x)

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

Find the range of the function f(x)=3 sin (sqrt((pi^(2))/(16)-x^(2))).

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

If I=int_0^((3pi)/4)[(1+x)sinx+(1-x)cosx]dx , then value of (sqrt(2)-1)I is_____

The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+pi/3)) is (where c is constant)

The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is