Home
Class 12
MATHS
Let vec a , vec b , vec c be three uni...

Let ` vec a , vec b` , ` vec c` be three unit vectors such that `| vec a+ vec b+ vec c|` = 1 and ` vec a_|_ vec bdot` If ` vec c` makes angles `alpha,beta` with ` vec a , vec b` respectively then `cosalpha+cosbeta` is equal to (a) `3/2` (b) 1 (c) `-1` (d) None of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    RESONANCE DPP ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

Let vec a ,\ vec b ,\ vec c be three unit vectors such that | vec a+ vec b+ vec c|=1\ a n d\ vec a is perpendicular to vec bdot If vec c makes angle alpha and beta with vec a\ a n d\ vec b respectively, then cosalpha+cosbeta= -3/2 b. 3/2 c. 1 d. -1

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec b+ vec c=0, then find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to