Home
Class 12
MATHS
The greatest value of the function f(...

The greatest value of the function `f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x` in the interval `[-1,1]` is

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    RESONANCE DPP ENGLISH|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

The function f(x)=-2x^3+21x^2-60x+41 , in the interval (-infty,1) is

Verify Lagrange's Mean value theorem for the function f(x) = x^(2) -1 in the interval [3,5].

The value of c in Lagrange's Mean Value theorem for the function f(x) =x+(1)/(x) in thhe interval [1,3] is

Find c of Lagranges mean value theorem for the function f(x)=3x^2+5x+7 in the interval [1,3]dot

Find c of Lagranges mean value theorem for the function f(x)=3x^2+5x+7 in the interval [1,3]dot

Verify Rolle's theorem for the function f(x) = {log (x^(2) +2) - log 3 } in the interval [-1,1] .

Verify mean value theorem for the function f(x) = x^(3)-2x^(2)-x+3 in [0,1]

What is the difference between the min and max values of the function f defined by f(x)=2x^(2)+3x-8 on the interval [-2,5] ?

Verify Rolle's theorem for the function f(x) = 2x^(3) + x^(2) - 4x - 2 in the interval [-(1)/(2) , sqrt2] .