Home
Class 11
MATHS
If (0,1),(1,1)a n d(1,0) be the middle p...

If `(0,1),(1,1)a n d(1,0)` be the middle points of the sides of a triangle, its incentre is `(2+sqrt(2),2+sqrt(2)` ) (b) `[2+sqrt(2),-(2+sqrt(2))]` `(2-sqrt(2),2-sqrt(2))` (d) `[2-sqrt(2),(2+sqrt(2))]`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    RESONANCE DPP ENGLISH|Exercise All Questions|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

1+(sqrt(2))/(2-sqrt(2)) is equal to

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

([(sqrt(2)+isqrt(3))+(sqrt(2)-isqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

int_0^(sqrt(2)) [x^2] dx is equal to (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))

2\ s in1^0 15 ' is equal to- a. \ sqrt(2-sqrt(2+sqrt(2))) b. \ sqrt(2-sqrt(2-sqrt(2))) c. sqrt((2+2sqrt(-sqrt(2)))/2) d. sqrt((2+sqrt(2+sqrt(2)))/2)

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))