Home
Class 11
MATHS
An equilateral triangle has each of its ...

An equilateral triangle has each of its sides of length 6 cm. If `(x_(1),y_(1)), (x_(2),y_(2))` & `(x_(3),y_(3))` are the verticles, then the value of the determinant `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|^(2)` is equal to :

Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    RESONANCE DPP ENGLISH|Exercise All Questions|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

An equilateral triangle has each side to a. If the coordinates of its vertices are (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) then the square of the determinat |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| equals

An equilateral triangle has each of its sides of length 6 cm. If (x_1, y_1);(x_2, y_2)&(x_3, y_3) are its vertices, then the value of the determinant |x_1y_1 1x_2y_2 1x_3y_3 1|^2 is equal to: 192 (b) 243 (c) 486 (d) 972

An equilateral triangle has each of its sides of length 6 cm. If (x_1, y_1);(x_2, y_2)&(x_3, y_3) are its vertices, then the value of the determinant |x_1y_1 1x_2y_2 1x_3y_3 1|^2 is equal to: 192 (b) 243 (c) 486 (d) 972

An equilateral triangle has each of its sides of length 4 cm. If (x_(r),y_(r)) (r=1,2,3) are its vertices the value of |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|^2

If A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3)) are vertices of an equilateral triangle whose each side is equal to a, then prove that |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)| is equal to

If x_(1), x_(2), x_(3) as well as y_(1), y_(2), y_(3) are in GP, with the same common ratio, then the points (x_(1),y_(1)), (x_(2),y_(2)) and (x_(3), y_(3))

If the points (x_1,y_1),(x_2,y_2)and(x_3,y_3) are collinear, then the rank of the matrix {:[(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)]:} will always be less than

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to