Home
Class 12
MATHS
The magnitudes of vectors vec a , vec b...

The magnitudes of vectors ` vec a , vec b` and ` vec c` are respectively `1,1` and `2.` If ` vec a` x (` vec a ` x ` vec c` )+ `vec b= vec0` , then the acute angle between ` vec a& vec c` is
(a)`pi/3` (b) `pi/6` (c) `pi/4` (d) None of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    RESONANCE DPP ENGLISH|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

The magnitude of vector vec(A),vec(B) and vec(C ) are respectively 12,5 and 13 unit and vec(A)+vec(B)= vec(C ) then the angle between vec(A) and vec(B) is

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

The magnitudes of vectors vec(A),vec(B) and vec(C) are 3,4 and 5 unit respectively. If vec(A)+vec(B)=vec(C), the angle between vec(A) and vec(B) is

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

The non-zero vectors are vec a,vec b and vec c are related by vec a= 8vec b and vec c = -7vec b . Then the angle between vec a and vec c is

Vector vec a , vec b and vec c are such that vec a+ vec b+ vec c= vec0 and |a|=3,| vec b|=5 and | vec c|=7. Find the angle between vec a and vec b .

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

If vec a and vec b are two vectors, such that vec a.vec b <0 and | vec a.vec b|=| vec axx vec b|, then the angle between vectors vec a and vec b is a. pi b. 7pi//4 c. pi//4 d. 3pi//4