Home
Class 12
MATHS
A B C is a triangle where A=(2,3,5)B=(-1...

`A B C` is a triangle where `A=(2,3,5)B=(-1,2,2)a n dC(lambda,5mu)` , if the median through `A` is equally inclined to the axes then: `lambda=mu=5` (b) `lambda=5,mu=7` `lambda=6,mu=9` (d) `lambda=0,mu=0`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS XII

    RESONANCE DPP ENGLISH|Exercise All Questions|25 Videos
  • VECTOR ALGEBRA

    RESONANCE DPP ENGLISH|Exercise All Questions|9 Videos

Similar Questions

Explore conceptually related problems

A B C is a triangle and A=(2,3,5),B=(-1,3,2) and C= (lambda,5,mu). If the median through A is equally inclined to the axes, then find the value of lambda and mu

A B C is a triangle and A=(235)dotB=(-1,3,2)a n dC=(lambda,5,mu)dot If the median through A is equally inclined to the axes, then find the value of lambdaa n dmudot

ABC is a triangle in a plane with vertices A(2,3,5),B(-1,3,2) and C(lamda,5,mu) . If the median through A is equally inclined to the coordinate axes, then the value of lamda^(3)+mu^(3)+5 is

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

Let A(2, 3, 5), B(-1, 3, 2), C(lambda, 5, mu) are the vertices of a triangle and its median through A(I.e.,) AD is equally inclined to the coordinates axes. Q. On the basis of the above information answer the following Q. The value of 2lambda-mu is equal to

Find the cartesian form of the equation of the plane. vecr=(lambda-mu)hati+(1-mu)hatj+(2lambda+3mu)hatk

If the points A(-1,3,2),B(-4,2,-2)a n dC(5,5,lambda) are collinear, find the value of lambda .

If y=2 is the directrix and (0,1) is the vertex of the parabola x^2+lambday+mu=0 , then (a) lambda=4 (b) mu=8 (c) lambda=-8 (d) mu=4

Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambdaz =mu the system has infinite solutions if (a) lambda ne 3 (b) lambda =3,mu =10 (c) lambda =3,mu ne 10 (d) lambda =3,mu ne 10

The system of equations: x+y+z=5 x+2y+3z=9 x+3y+lambdaz=mu has a unique solution, if lambda=5,mu=13 (b) lambda!=5 lambda=5,mu!=13 (d) mu!=13