Home
Class 12
MATHS
lim(xto oo) (int(0)^(x)(tan^(-1)t)^2dt)/...

`lim_(xto oo) (int_(0)^(x)(tan^(-1)t)^2dt)/(sqrt(x^(2)+1))` has the value
a)zero (b) `pi/4` (c) 1 (d) `(pi^2)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ L = \lim_{x \to \infty} \frac{\int_0^x (\tan^{-1} t)^2 dt}{\sqrt{x^2 + 1}}, \] we will follow these steps: ### Step 1: Identify the form of the limit As \( x \to \infty \), the integral in the numerator approaches infinity because the integrand \((\tan^{-1} t)^2\) is positive for \(t > 0\). The denominator \(\sqrt{x^2 + 1}\) also approaches infinity. Thus, we have an indeterminate form of \(\frac{\infty}{\infty}\). **Hint:** Check the behavior of both the numerator and denominator as \(x\) approaches infinity to confirm the indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \(\lim_{x \to c} \frac{f(x)}{g(x)}\) is of the form \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] provided the limit on the right exists. ### Step 3: Differentiate the numerator and denominator 1. Differentiate the numerator: \[ \frac{d}{dx} \left( \int_0^x (\tan^{-1} t)^2 dt \right) = (\tan^{-1} x)^2 \quad \text{(by the Fundamental Theorem of Calculus)} \] 2. Differentiate the denominator: \[ \frac{d}{dx} \left( \sqrt{x^2 + 1} \right) = \frac{x}{\sqrt{x^2 + 1}}. \] ### Step 4: Rewrite the limit using derivatives Now, we can rewrite the limit as: \[ L = \lim_{x \to \infty} \frac{(\tan^{-1} x)^2}{\frac{x}{\sqrt{x^2 + 1}}} = \lim_{x \to \infty} \frac{(\tan^{-1} x)^2 \sqrt{x^2 + 1}}{x}. \] ### Step 5: Simplify the expression As \(x\) approaches infinity: - \(\tan^{-1} x\) approaches \(\frac{\pi}{2}\). - \(\sqrt{x^2 + 1} \sim x\) (since for large \(x\), \(\sqrt{x^2 + 1} \approx x\)). Substituting these into the limit gives: \[ L = \lim_{x \to \infty} \frac{\left(\frac{\pi}{2}\right)^2 \cdot x}{x} = \left(\frac{\pi}{2}\right)^2 = \frac{\pi^2}{4}. \] ### Step 6: Final result Thus, the value of the limit is: \[ L = \frac{\pi^2}{4}. \] ### Conclusion The answer is option (d) \(\frac{\pi^2}{4}\). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|15 Videos
  • MATRICES

    RESONANCE DPP ENGLISH|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

((lim)_(xvecoo)int0x(tan^(-1)t)^2dt)/(sqrt(x^2+1))h a st h ev a l u e zero (b) pi/4 (c) 1 (d) (pi^2)/4

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is:

int_0^1 (tan^-1x)/xdx-1/2int_0^(pi/2) t/sint dt has the value (A) -1 (B) 1 (C) 2 (D) 0

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

RESONANCE DPP ENGLISH-JEE MAINS-All Questions
  1. If I(m,n)=int0^1 t^m(1+t)^n.dt, then the expression for I(m,n) in term...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. lim(xto oo) (int(0)^(x)(tan^(-1)t)^2dt)/(sqrt(x^(2)+1)) has the value ...

    Text Solution

    |

  4. If in a triangle r1=r2+r3+r , prove that the triangle is right angled.

    Text Solution

    |

  5. The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,...

    Text Solution

    |

  6. The number of odd divisor of the number N=2^(10). 3^5 .7^2, are a....

    Text Solution

    |

  7. The equation |x+1|^(log)(("x"+1))(3+2-x^(2))=(x-3)|x| has a. unique s...

    Text Solution

    |

  8. Let f : R to R be a differentiable function and f(1) = 4. Then, the va...

    Text Solution

    |

  9. In a A B C ,A : B : C=3:5: 4. Then a+b+csqrt(2) is equal to a.2b b. 2...

    Text Solution

    |

  10. For x in R the expression (x ^(2) +2x +c)/(x ^(2)+ 4x + 3x ) can take ...

    Text Solution

    |

  11. Prove that int0^1tan^(-1)(1/(1-x+x^2))dx=2int0^1tan^(-1)x dx. Hence ...

    Text Solution

    |

  12. A seven digit number is choosen. What the probability that even number...

    Text Solution

    |

  13. If the papers of 4 students can be checked by any one of the 7 teac...

    Text Solution

    |

  14. Let N be the foot of perpendicular to the x-axis from point P on the p...

    Text Solution

    |

  15. If all the letters of the word IIT-JEE are written at random in a ro...

    Text Solution

    |

  16. A man and a woman appear in an interview for two vacancies in the s...

    Text Solution

    |

  17. 18 points are indicated on the perimeter of a triangle ABC (see fig...

    Text Solution

    |

  18. The numbers 1, 2, 3, ..., n are arrange in a random order. The probabi...

    Text Solution

    |

  19. If the vectors vec c , vec a=x hat i+y hat j+z hat k and vec b= hat j...

    Text Solution

    |

  20. For two complex numbers z1&z2 (a z1+b z1)(c z2+d z2)=(c z1+bz2)if(a ...

    Text Solution

    |