Home
Class 12
MATHS
If AD, BE and CF are the medians of a De...

If `AD, BE and CF` are the medians of a `DeltaA B C ,t h e n(A D^2+B E^2+C F^2):(B C^2+C A^2+A B^2)` is equal to

A

`4:3`

B

`3:2`

C

3:4

D

2:3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the sum of the squares of the medians of triangle \( ABC \) to the sum of the squares of its sides. Let's denote the sides of the triangle as follows: - \( a = BC \) - \( b = CA \) - \( c = AB \) The medians from the vertices \( A, B, \) and \( C \) to the opposite sides \( BC, CA, \) and \( AB \) are denoted as \( AD, BE, \) and \( CF \) respectively. ### Step 1: Write the formulas for the lengths of the medians The lengths of the medians can be calculated using the following formulas: - \( AD = \frac{1}{2} \sqrt{2b^2 + 2c^2 - a^2} \) - \( BE = \frac{1}{2} \sqrt{2c^2 + 2a^2 - b^2} \) - \( CF = \frac{1}{2} \sqrt{2a^2 + 2b^2 - c^2} \) ### Step 2: Calculate the squares of the medians Now we will square the lengths of the medians: - \( AD^2 = \left(\frac{1}{2} \sqrt{2b^2 + 2c^2 - a^2}\right)^2 = \frac{1}{4}(2b^2 + 2c^2 - a^2) \) - \( BE^2 = \left(\frac{1}{2} \sqrt{2c^2 + 2a^2 - b^2}\right)^2 = \frac{1}{4}(2c^2 + 2a^2 - b^2) \) - \( CF^2 = \left(\frac{1}{2} \sqrt{2a^2 + 2b^2 - c^2}\right)^2 = \frac{1}{4}(2a^2 + 2b^2 - c^2) \) ### Step 3: Sum the squares of the medians Now, we will sum the squares of the medians: \[ AD^2 + BE^2 + CF^2 = \frac{1}{4} \left( (2b^2 + 2c^2 - a^2) + (2c^2 + 2a^2 - b^2) + (2a^2 + 2b^2 - c^2) \right) \] Combining the terms: \[ = \frac{1}{4} \left( 4a^2 + 4b^2 + 4c^2 - (a^2 + b^2 + c^2) \right) = \frac{1}{4} \left( 3a^2 + 3b^2 + 3c^2 \right) = \frac{3}{4} (a^2 + b^2 + c^2) \] ### Step 4: Calculate the sum of the squares of the sides The sum of the squares of the sides is: \[ BC^2 + CA^2 + AB^2 = a^2 + b^2 + c^2 \] ### Step 5: Find the ratio Now we can find the ratio of the sum of the squares of the medians to the sum of the squares of the sides: \[ \frac{AD^2 + BE^2 + CF^2}{BC^2 + CA^2 + AB^2} = \frac{\frac{3}{4}(a^2 + b^2 + c^2)}{a^2 + b^2 + c^2} \] This simplifies to: \[ \frac{3}{4} \] ### Final Answer Thus, the ratio \( (AD^2 + BE^2 + CF^2) : (BC^2 + CA^2 + AB^2) \) is equal to \( \frac{3}{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|15 Videos
  • MATRICES

    RESONANCE DPP ENGLISH|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

The A D ,B Ea n dC F are the medians of a c A B C , then (A D^2+B E^2+C F^2):(B C^2+C A^2+A B^2) is equal to

In Fig.9.23, E is any point on median AD of a DeltaA B C . Show that a r\ (A B E)\ =\ a r\ (A C E)dot

In a DeltaA B C prove that cos ((A+B)/2)=sin (C/2).

AD, BE and CF are the medians of triangle ABC whose centroid is G. If the points A, F, G and E are concyclic, then prove that 2a^(2) = b^(2) + c^(2)

If A and B are two square matrices such that B=-A^(-1)B A ,t h e n(A+B)^2 is equal to a. A^2+B^2 b. O c. A^2+2A B+B^2 d. A+B

In any DeltaA B C ,suma(sinB-sin C)= (a) a^2+b^2+c^2 (b) a^2 (c) b^2 (d) 0

If E is a point on side C A of an equilateral triangle A B C such that B E_|_C A , then A B^2+B C^2+C A^2= 2\ B E^2 (b) 3\ B E^2 (c) 4\ B E^2 (d) 6\ B E^2

In A B C , the median A D divides /_B A C such that /_B A D :/_C A D=2:1 . Then cos(A/3) is equal to (sinB)/(2sinC) (b) (sinC)/(2sinB) (2sinB)/(sinC) (d) non eoft h e s e

In A B C , A D is a median. Prove that A B^2+A C^2=2\ A D^2+2\ D C^2 .

D, E and F are respectively the mid-points of the sides BC, CA and AB of a DeltaA B C . Show that (i) BDEF is a parallelogram. (ii) a r\ (D E F)=1/4a r\ (A B C) (iii) a r\ (B D E F)=1/2a r\ (A B C)

RESONANCE DPP ENGLISH-JEE MAINS-All Questions
  1. If In=intsin^n xdxn in N , t h e n5I4-6I6 is equal to s in x(cosx)^5+...

    Text Solution

    |

  2. int0^pisin^3theta(1+2costheta)(1+costheta)^2dtheta is equal to 1/3 (...

    Text Solution

    |

  3. If AD, BE and CF are the medians of a DeltaA B C ,t h e n(A D^2+B E^2+...

    Text Solution

    |

  4. The value of int(-(pi/4)^(1/3))^((pi/4)^(1/3))(x^2)/((1+sin^2x^3)(1+e^...

    Text Solution

    |

  5. If H is the orthocentre of a triangle ABC, then the radii of the cir...

    Text Solution

    |

  6. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  7. Find the coordinates of a point on the parabola y=x^2+7x+2 which is cl...

    Text Solution

    |

  8. Let (d)/(dx )F(x) =((e ^(sin x ))/(x )), x gt 0 If int(1 )^(4) (3)/(x)...

    Text Solution

    |

  9. If in Delta ABC, (a -b) (s-c) = (b -c) (s-a), prove that r(1), r(2), r...

    Text Solution

    |

  10. Show that int0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

    Text Solution

    |

  11. If in triangle ABC (r)/(r(1))=(1)/(2), then the value of tan(A/2)(tan(...

    Text Solution

    |

  12. Let u=int0^1("ln"(x+1))/(x^2+1)dx a n d v=int0^(pi/2)ln(sin2x)dx ,t h ...

    Text Solution

    |

  13. A golf ball is dropped from a height of 80 m. Each time the ball hi...

    Text Solution

    |

  14. if |f(x1)-f(x2)|<=(x1-x2)^2Find the equation of tangent to the curve y...

    Text Solution

    |

  15. From the point (lambda,3) tangents are drawn to x^(2)/9+y^(2)/4=1 and ...

    Text Solution

    |

  16. If a curve with equation of the form y=ax^(4)+bx^(3)+cx+d has zero gra...

    Text Solution

    |

  17. A tangent is drawn to the ellipse (x^2)/(27)+y^2=1 at (3sqrt(3)costhet...

    Text Solution

    |

  18. The left hand derivative of f(x)=[x]sin(pix) at x = k, k in Z, is

    Text Solution

    |

  19. The locus of the point of intersection of the tangents at the extre...

    Text Solution

    |

  20. Find the possible values of a such that f(x)=e^(2x)-(a+1)e^(x)+2xis mo...

    Text Solution

    |