Home
Class 12
MATHS
The fourth term of the sequence 1/(1+sqr...

The fourth term of the sequence `1/(1+sqrt(x)),1/(1-x),1/(1-sqrt(x)), .....` is:

A

`1/(1-2sqrt(x))`

B

`1/(2-sqrt(x))`

C

`(1+2sqrt(x))/(1-x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the fourth term of the sequence given by \( \frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}} \), we will first check if these terms are in Arithmetic Progression (AP). ### Step 1: Identify the terms Let: - \( A = \frac{1}{1+\sqrt{x}} \) (first term) - \( B = \frac{1}{1-x} \) (second term) - \( C = \frac{1}{1-\sqrt{x}} \) (third term) ### Step 2: Check if the terms are in AP For the terms to be in AP, the following condition must hold: \[ 2B = A + C \] Substituting the values of \( A \), \( B \), and \( C \): \[ 2 \cdot \frac{1}{1-x} = \frac{1}{1+\sqrt{x}} + \frac{1}{1-\sqrt{x}} \] ### Step 3: Simplify the right-hand side To simplify \( \frac{1}{1+\sqrt{x}} + \frac{1}{1-\sqrt{x}} \), we need a common denominator: \[ \frac{1}{1+\sqrt{x}} + \frac{1}{1-\sqrt{x}} = \frac{(1-\sqrt{x}) + (1+\sqrt{x})}{(1+\sqrt{x})(1-\sqrt{x})} \] This simplifies to: \[ \frac{2}{1 - (\sqrt{x})^2} = \frac{2}{1 - x} \] ### Step 4: Set the left-hand side equal to the right-hand side Now we have: \[ 2 \cdot \frac{1}{1-x} = \frac{2}{1-x} \] This confirms that the terms are indeed in AP. ### Step 5: Find the common difference \( D \) The common difference \( D \) can be calculated as: \[ D = B - A = \frac{1}{1-x} - \frac{1}{1+\sqrt{x}} \] Finding a common denominator: \[ D = \frac{(1+\sqrt{x}) - (1-x)}{(1-x)(1+\sqrt{x})} = \frac{\sqrt{x} + x}{(1-x)(1+\sqrt{x})} \] ### Step 6: Calculate the fourth term The fourth term \( T_4 \) can be calculated as: \[ T_4 = C + D = \frac{1}{1-\sqrt{x}} + D \] Substituting \( D \): \[ T_4 = \frac{1}{1-\sqrt{x}} + \frac{\sqrt{x} + x}{(1-x)(1+\sqrt{x})} \] ### Step 7: Combine the terms To combine these fractions, we need a common denominator: \[ T_4 = \frac{(1-x)(1+\sqrt{x}) + (\sqrt{x} + x)(1-\sqrt{x})}{(1-\sqrt{x})(1-x)(1+\sqrt{x})} \] After simplifying the numerator, we will arrive at: \[ T_4 = \frac{1 + 2\sqrt{x}}{1-x} \] ### Final Result Thus, the fourth term of the sequence is: \[ \frac{1 + 2\sqrt{x}}{1-x} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|15 Videos
  • MATRICES

    RESONANCE DPP ENGLISH|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

int sqrt((1+sqrt(x))/(1-sqrt(x))dx

The following consecutive terms (1)/(1+sqrt(x)),(1)/(1-x),(1)/(1-sqrt(x)) of a series are in

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

Integrate the functions sqrt((1-sqrt(x))/(1+sqrt(x)))

y=log((sqrt(x+1)+1]/(sqrt(x+1)-1))

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

Solve for x :sqrt(x+1)-sqrt(x-1)=1.

RESONANCE DPP ENGLISH-JEE MAINS-All Questions
  1. Let a(n) be the nth term of an AP, if sum(r=1)^(100)a(2r)= alpha " and...

    Text Solution

    |

  2. Let vectors vec a , vec b , vec c ,a n d vec d be such that ( vec axx...

    Text Solution

    |

  3. The fourth term of the sequence 1/(1+sqrt(x)),1/(1-x),1/(1-sqrt(x)), ...

    Text Solution

    |

  4. At the point P (a,a^(n)) on the graph of y=x^(n),(n in N), in the firs...

    Text Solution

    |

  5. Sum of all the numbers between 1 and 1000 which are divisible by 3 i...

    Text Solution

    |

  6. int(cos^3x)/(sqrt(sin^7x))dx= (a) 2/5dotcos e c^(7/2)x+2sqrt(cose c ...

    Text Solution

    |

  7. Given an A.P. whose terms are all positive integers. The sum of its fi...

    Text Solution

    |

  8. Evaluate: int1/(sin^4x+cos^4x)dx

    Text Solution

    |

  9. If a, b, c are in A.P. and b-a, c-b, a are in G.P. then a:b:c=?

    Text Solution

    |

  10. Evaluate: int(x+1)/(x(1+xe^x)^2)dx

    Text Solution

    |

  11. If the sequence a1, a2, a3,....... an ,dot forms an A.P., then prove ...

    Text Solution

    |

  12. If int0^a(dx)/(sqrt(x+a)+sqrt(x))=int0^(pi/8)(2tantheta)/(sin2theta)d ...

    Text Solution

    |

  13. The sum of the first three terms of an arithmetic progression is 9 and...

    Text Solution

    |

  14. int("sin"2"x")/(sin5x .sin3x)dx a.1/3ln|sin3x|+1/5ln|sin5x|+c b. ...

    Text Solution

    |

  15. A postman delivered daily for 42 days 4 more latters each day than on ...

    Text Solution

    |

  16. If int0^1tan^(-1)xdx=alpha,t h e nint0^(pi/4)tan^(-1)((2cos^2theta)/(...

    Text Solution

    |

  17. If in a triangle A B C , right angle at B ,s-a=3a n ds-c=2, then a=2,c...

    Text Solution

    |

  18. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  19. In a triangle A B C , right angled at B , the inradius is (A B+B C-A C...

    Text Solution

    |

  20. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |