Home
Class 11
MATHS
The value of underset(nrarrinfty)(lim)(1...

The value of `underset(nrarrinfty)(lim)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))` is equal to

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    RESONANCE DPP ENGLISH|Exercise All Questions|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|3 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

l isum_(n-gtoo)sum_(r=1)^n1/(sqrt(4n^2-r^2))

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5