Home
Class 11
MATHS
If two distinct chords, drawn from the p...

If two distinct chords, drawn from the point (p, q) on the circle `x^2+y^2=p x+q y` (where `p q!=q)` are bisected by the x-axis, then `p^2=q^2` (b) `p^2=8q^2` `p^2<8q^2` (d) `p^2>8q^2`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|41 Videos
  • JEE MAINS

    RESONANCE DPP ENGLISH|Exercise All Questions|3 Videos

Similar Questions

Explore conceptually related problems

If two distinct chords, drawn from the point (p, q) on the circle x^2+y^2=p x+q y (where p q!=q) are bisected by the x-axis, then p^2=q^2 (b) p^2=8q^2 p^2 8q^2

If two distinct chords, drawn from the point (p, q) on the circle x^2+y^2=p x+q y (where p q!=q) are bisected by the x-axis, then p^2=q^2 (b) p^2=8q^2 p^2 8q^2

If two distinct chords, drawn from the point (p,q) on the circle x^(2)+y^(2)=px+qy, where pq!=0 are bisected by x-axis then show that p^(2)gt8q^(2) .

The equations of the tangents drawn from the origin to the circle x^2 + y^2 - 2px - 2qy + q^2 = 0 are perpendicular if (A) p^2 = q^2 (B) p^2 = q^2 =1 (C) p = q/2 (D) q= p/2

The circumference of the circle x^2+y^2-2x+8y-q=0 is bisected by the circle x^2+ y^2+4x+12y+p=0 , then p+q is equal to

Prove that p x^(q-r)+q x^(r-p)+r x^(p-q)> p+q+r ,where p, q, r are distinct and x!=1.

If two positive integers a and b are expressible in the form a=p q^2 and b=p^3q ; p ,\ q being prime numbers, then LCM (a ,\ b) is (a) p q (b) p^3q^3 (c) p^3q^2 (d) p^2q^2

If the solution to 2x^(2)-8x-5=0 are p and q with pgtq , what is the value of p-q?

If 2 + isqrt3 is a root of x^(3) - 6x^(2) + px + q = 0 (where p and q are real) then p + q is

RESONANCE DPP ENGLISH-CONIC SECTIONS-All Questions
  1. The hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 passes through the point (2, )...

    Text Solution

    |

  2. The tangent at the point P on the rectangular hyperbola x y=k^2 with C...

    Text Solution

    |

  3. If L1&amp;L2 are the lengths of the segments of any focal chord of th...

    Text Solution

    |

  4. If y=2x+3 is a tangent to the parabola y^2=24 x , then find its distan...

    Text Solution

    |

  5. For hyperbola (x^(2))/(cos^(2)alpha)-(y^(2))/(sin^(2)beta)=1 which of ...

    Text Solution

    |

  6. Number of normals drawn from the point (-2,2) to the parabola y^2-2y-2...

    Text Solution

    |

  7. If the line 2x-2y+lambda=0 is a secant to the parabola x^2=-8y , the...

    Text Solution

    |

  8. A set of parallel chords of the parabola y^2=4a x have their midpoint ...

    Text Solution

    |

  9. A rhombus is formed by two radii and two chords of a circle whose r...

    Text Solution

    |

  10. A point on a parabola y^2=4a x , the foot of the perpendicular from it...

    Text Solution

    |

  11. The chord of contact of the pair of tangents drawn from each point on ...

    Text Solution

    |

  12. The focal chord to y^2=16 x is tangent to (x-6)^2+y^2=2. Then the poss...

    Text Solution

    |

  13. Find the locus of the point of intersection of the perpendicular ta...

    Text Solution

    |

  14. Through the vertex ' O^(prime) of the parabola y^2=4a x , variable c...

    Text Solution

    |

  15. The locus of the midpoint of the line segment joining the focus to a ...

    Text Solution

    |

  16. The equation to the chord joining two points (x1,y1)a n d(x2,y2) on th...

    Text Solution

    |

  17. The locus of the point of intersection of the tangents at the extre...

    Text Solution

    |

  18. Let us consider an ellipse whose major and minor axis are 3x+4y-7=0 an...

    Text Solution

    |

  19. If two distinct chords, drawn from the point (p, q) on the circle x^2+...

    Text Solution

    |

  20. A parabola y=a x^2+b x+c crosses the x-axis at (alpha,0)(beta,0) both ...

    Text Solution

    |