Home
Class 12
MATHS
Let Sn=1+2+3++n and Pn=(S2)/(S2-1)dot(S...

Let `S_n=1+2+3++n` and `P_n=(S_2)/(S_2-1)dot(S_3)/(S_3-1)dot(S_4)/(S_4-1)...(S_n)/(S_n-1)` Where `n in N ,(ngeq2)dot` Then `("lim")_(n→oo)P_n=______`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    RESONANCE DPP ENGLISH|Exercise All Questions|15 Videos
  • MATRICES

    RESONANCE DPP ENGLISH|Exercise All Questions|7 Videos

Similar Questions

Explore conceptually related problems

Let S_(n)=1+2+3+...+n " and " P_(n)=(S_(2))/(S_(2)-1).(S_(3))/(S_(3)-1).(S_(4))/(S_(4)-1)...(S_(n))/(S_(n)-1) , where n inN,(nge2) Then underset(ntooo)limP_(n) =__________.

If s_n=(1-4/1)(1-4/9)(1-4/25)......(1-4/((2n-1)^2)), where n in N, then

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to

The value of lim_(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)^n)/(n^2+1)]i s 1 (b) -1 (c) 0 (d) none of these

If S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!) , then S_(50)=

If S_(1), S_(2), S_(3),...,S_(n) are the sums of infinite geometric series, whose first terms are 1, 2, 3,.., n and whose common rations are (1)/(2), (1)/(3), (1)/(4),..., (1)/(n+1) respectively, then find the values of S_(1)^(2) + S_(2)^(2) + S_(3)^(2) + ...+ S_(2n-1)^(2) .

If S_(n)=1+1/2+1/3+…+1/n(ninN) , then prove that S_(1)+S_(2)+..+S_((n-1))=(nS((n))-n)or(nS((n-1))-n+1)

Let S_n=Sigma_(k=1)^(4n) (-1)^((k(k+1))/2)k^2 .Then S_n can take value (s)

If S_n denotes the sum of n terms of A.P., then S_(n+3)-3S_(n+2)+3S_(n+1)-S_n= (a) S_2-n b. S_(n+1) c. 3S_n d. 0

RESONANCE DPP ENGLISH-JEE MAINS-All Questions
  1. if y^(2)(y^(2)-6)+x^(2)-8x+24=0, then maximum value of sqrt(y^(4)+x^(2...

    Text Solution

    |

  2. The tangent to y = ax ^(2)+ bx + (7 )/(2) at (1,2) is parallel to the ...

    Text Solution

    |

  3. Let Sn=1+2+3++n and Pn=(S2)/(S2-1)dot(S3)/(S3-1)dot(S4)/(S4-1)...(Sn)...

    Text Solution

    |

  4. A curve is represented parametrically by the equations x=t+e^(at) and ...

    Text Solution

    |

  5. Point A lies on the line y=2x and the sum of its abscissa and ordinate...

    Text Solution

    |

  6. A committee of two persons is selected from two men and two women. ...

    Text Solution

    |

  7. The number of possible outcomes in a throw of n ordinary dice in wh...

    Text Solution

    |

  8. If Ram secures 100 marks n math then he will get a mobile. The logica...

    Text Solution

    |

  9. Find the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^(11)dot

    Text Solution

    |

  10. The sum of digits in the units place of all numbers formed with the...

    Text Solution

    |

  11. Find the point where the line x+y=6 is a normal to the parabola y^2=8x...

    Text Solution

    |

  12. The eccentricity of the conjugate hyperbola of the hyperbola x^2-3y^2=...

    Text Solution

    |

  13. Let y=f(x) be satisfying differential equation e^(-x^(2))(dy)/(dx)=2xy...

    Text Solution

    |

  14. Tangents are drawn from the points on the line x-y-5=0 to x^2+4y^2=4 ....

    Text Solution

    |

  15. The points (p,q +r) , (q, r+p) and (r, q+p) are "".

    Text Solution

    |

  16. lf r1 and r2 are the distances of points on the curve 10(ZbarZ)-3i(Z^2...

    Text Solution

    |

  17. int(dx)/(ax^(2)+bx+c)=k(1)tan^(-1)(x+A)/(B)+C if

    Text Solution

    |

  18. Consider f(x)=int(-1)^(x)(e^((x-t)/(x-2-t))dt)/(x-2-t)^(2) Q. The y-...

    Text Solution

    |

  19. Let y=f(x) be satisfying differential equation e^(-x^(2))(dy)/(dx)=2xy...

    Text Solution

    |

  20. Find the area bounded by the curves y=6x-x^2a n dy=x^2-2xdot

    Text Solution

    |