Home
Class 12
MATHS
Complex numbers z1 , z2 , z3 are the ver...

Complex numbers `z_1 , z_2 , z_3` are the vertices `A, B, C` respectively of an isosceles right angled trianglewith right angle at `C and (z_1- z_2)^2 = k(z_1 - z_3) (z_3 -z_2)`, then find k.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Complex numbers z_(1),z_(2)andz_(3) are the vertices A,B,C respectivelt of an isosceles right angled triangle with right angle at C. show that (z_(1)-z_(2))^(2)=2(z_1-z_(3))(z_(3)-z_(2)).

Let the complex numbers Z_(1), Z_(2) and Z_(3) are the vertices A, B and C respectively of an isosceles right - angled triangle ABC with right angle at C, then the value of ((Z_(1)-Z_(2))^(2))/((Z_(1)-Z_(3))(Z_(3)-Z_(2))) is equal to

If z_(1),z_(2),z_(3) are the vertices of an isoscles triangle right angled at z_(2) , then

Complex numbers z_(1),z_(2),z_(3) are the vertices of A,B,C respectively of an equilteral triangle. Show that z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1).

If z_1 , z_2 ,z_3 are the vertices of an isosceles triangle right angled at z_2 , then prove that (z_1)^2+2(z_2)^2+(z_3)^2=2(z1+z3)z2

Find the condition in order that z_(1),z_(2),z_(3) are vertices of an.isosceles triangle right angled at z_(2) .

z_1, z_2 and z_3 are the vertices of an isosceles triangle in anticlockwise direction with origin as in center , then prove that z_2, z_1 and kz_3 are in G.P. where k in R^+dot

The points A,B,C represent the complex numbers z_1,z_2,z_3 respectively on a complex plane & the angle B & C of the triangle ABC are each equal to 1/2 (pi-alpha) . If (z_2-z_3)^2=lambda(z_3-z_1)(z_1-z_2) sin^2( alpha/2) then determine lambda .

If the complex numbers z_(1), z_(2), z_(3) represent the vertices of an equilateral triangle, and |z_(1)|= |z_(2)| = |z_(3)| , prove that z_(1)+ z_(2) + z_(3)=0

If z_1,z_2,z_3 be the vertices A,B,C respectively of triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|=|z_1-z_2| then C= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4