Home
Class 12
MATHS
Let z1=2-i ,""""z2=-2+i . Find (i) Re (...

Let `z_1=2-i ,""""z_2=-2+i` . Find (i) Re `((z_1z_2)/( bar z_1))` (ii) Im`(1/(z_1 bar z_1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

If z_1=2-i ,\ z_2=-2+i , find : R e((z_1z_2)/bar(z_1))

If z_1=2-i ,\ z_2=-2+i , find : Im(1/(z_1bar(z_2))) .

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

If z_(1) = 1 +iand z_(2) = -3+2i then lm ((z_(1)z_(2))/barz_(1)) is

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

Find Re ((z_(1)z_(2))/(z_(1))), give z_(1)=2-i and z_(2)=-2+i