Home
Class 12
MATHS
If omega is complex cube root of unity (...

If `omega` is complex cube root of unity `(1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is a cube root of unity, then 1+omega = …..

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a cube root of unity, then omega^(3) = ……

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If omega be a complex cube root of unity, then the number (1-omega-omega^2)^3+(omega-1-omega^2)^3+(omega^2-omega-1)^3 is: a. Divisible by 3 but not by 8 b. Divisible by 8 but not by 3 c. Divisible by both 3 & 8 d. none of these