Home
Class 12
MATHS
If omega be an imaginary cube root of un...

If `omega` be an imaginary cube root of unity, show that ` (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega is an imaginary cube root of unity, then show that (1-omega+omega^2)^5+(1+omega-omega^2)^5 =32

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If omega is an imaginary cube root of unity, then show that (1-omega)(1-omega^2)(1-omega^4) (1-omega^5)=9

If |(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4x+1, x-2, x+2)|= px^4 +qx^3+rx^2+sx+t be n identity in x and omega be an imaginary cube root of unity, (a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)= (A) p (B) 2p (C) -2p (D) -p

If omega is an imaginary cube root of unity, then the value of |(a,b omega^(2),a omega),(b omega,c,b omega^(2)),(c omega^(2),a omega,c)| , is

omega is an imaginary root of unity. Prove that (i) ( a + bomega + comega^(2))^(3) + (a+bomega^(2) + comega)^(3) = (2a-b-c)(2b -a -c)(2c -a-b) (ii) If a+b+c = 0 then prove that (a + bomega + comega^(2))^(3)+(a+bomega^(2) + comega)^(3) = 27abc .

If 1, omega and omega^(2) are the cube roots of unity, prove that (a+b omega+c omega^(2))/(c+a omega+b omega^(2))=omega^(2)