Home
Class 12
MATHS
If omega be an imaginary cube root of u...

If ` omega` be an imaginary cube root of unity, show that ` 1+omega^n+omega^(2n)=0 ,`for n=2,4

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If omega is an imaginary cube root of unity, then show that (1-omega)(1-omega^2)(1-omega^4) (1-omega^5)=9

If omega is an imaginary cube root of unity, then show that (1-omega+omega^2)^5+(1+omega-omega^2)^5 =32

If 1, omega, omega^(2) are the cube roots of unity, prove that omega^(n) + omega^(2n) =2 or -1 according as n is a multiple of 3 or any other integer.

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is an imaginary cube root of unity, then the value of |(a,b omega^(2),a omega),(b omega,c,b omega^(2)),(c omega^(2),a omega,c)| , is

If 1, omega, omega^(2) are three cube roots of unity, show that (a + omega b+ omega^(2)c) (a + omega^(2)b+ omega c)= a^(2) + b^(2) + c^(2)- ab- bc - ca