Home
Class 12
MATHS
Prove by using principle of induction th...

Prove by using principle of induction that: ` cos alpha+cos 2alpha+…+cos n alpha = sin. (nalpha)/2 cosec alpha/2 cos. ((n+1)alpha)/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

Simplify be reducing to a single term : sin 3 alpha cos 2 alpha + cos 3 alpha sin 2 alpha.

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

(cos alpha + 2 cos 3 alpha + cos 5 alpha )/(cos 3 alpha + 2 cos 5 alpha + cos 7 alpha ) = cos 3 alpha sec 5 alpha .

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)alpha