Home
Class 12
MATHS
Construct a matrix [a(ij)](3xx3) , wher...

Construct a matrix `[a_(ij)]_(3xx3)` , where `a_(ij)=2i-3j`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

A matrix A=[a_(ij)]_(mxxn) is

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i/j

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Construct a 3xx4 matrix A=[a_(i j)] whose elements a_(i j) are given by: ) a_(i j)=2i

Construct a 3xx4 matrix A=[a_(i j)] whose elements a_(i j) are given by: (i) a_(i j)=j (ii) a_(i j)=1/2|-3i+j|

Construct a 2xx2 matrix A=[a_(i j)] whose elements a_(i j) are given by: (i) a_(i j)=((2i+j)^2)/2 (ii) a_(i j)=(|2i-3j|)/2 (iii) a_(i j)=(|-3i+j|)/2