Home
Class 12
MATHS
If F(x)=[cosx-sinx0sinxcosx0 0 0 1], sho...

If `F(x)=[cosx-sinx0sinxcosx0 0 0 1]`, show that `F(x) F(y) = F(x + y)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x)= [cosx -sinx 0 sinx cosx 0 0 0 1] . Show that F(x)\ F(y)=F(x+y)

If F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[ 0, 0, 1]] , show that F(x) F(y) = F(x + y) .

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If f(x) = {sinx , x lt 0 and cosx-|x-1| , x leq 0 then g(x) = f(|x|) is non-differentiable for

Given that F(x)=[{:(,cos x,-sin x,0),(,sin x,cos x,0),(,0,0,1):}]."If"in R Then for what values of y, F(x+y)=F(x)F(y)

Let f(x) is a differentiable function on x in R , such that f(x+y)=f(x)f(y) for all x, y in R where f(0) ne 0 . If f(5)=10, f'(0)=0 , then the value of f'(5) is equal to

Let f be a one-one function such that f(x).f(y) + 2 = f(x) + f(y) + f(xy), AA x, y in R - {0} and f(0) = 1, f'(1) = 2 . Prove that 3(int f(x) dx) - x(f(x) + 2) is constant.

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

Let f :R to R be a continous and differentiable function such that f (x+y ) =f (x). F(y)AA x, y, f(x) ne 0 and f (0 )=1 and f '(0) =2. Let g (xy) =g (x). g (y) AA x, y and g'(1)=2.g (1) ne =0 The number of values of x, where f (x) g(x):