Home
Class 12
MATHS
Two matrices A and B have in total 6 dif...

Two matrices A and B have in total 6 different elements (none repeated). How many different amtrices A and B are possible such that products AB is defined.
`A={:[(,cos^(2)theta,cos theta sin theta),(,cos theta sin theta,sin^(2)theta)]:} and B A={:[(,cos^(2)phi,cos phi sin phi),(,cos phi sin phi,sin^(2)phi)]:} "then" theta=phi` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Flind the product of two matrices A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]] Show that, AB is the zero matrix if theta and phi differ by an odd multipl of pi/2 .

Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that (cos theta+sin theta )^2 + (cos theta - sin theta )^2 =2

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta