Home
Class 12
MATHS
Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2...

Show that ` |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a) `

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: (i) |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a) (ii) |[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a b+b c+c a) .

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

If g(x)=(f(x))/((x-a)(x-b)(x-c)) ,where f(x) is a polynomial of degree <3 , then intg(x)dx=|[1,a,f(a)log|x-a|],[1,b,f(b)log|x-b|],[1,c,f(c)log|x-c|]|-:|[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|+k (dg(x))/(dx)=|[1,a,-f(a)(x-a)^(-2)],[1,b,-f(b)(x-b)^(-2)],[1,c,-f(c)(x-c)^(-2)]|:-|[1,a,a^2],[1,b,b^2],[1,c,c^2]|

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Show that: |[a,b-c,c+b],[a+c,b,c-a],[a-b,b+a,c]|=(a+b+c)(a^2+b^2+c^2) .

Prove that [[1+a^2+a^4, 1+a b+a^2b^2 ,1+a c+a^2c^2],[ 1+a b+a^2b^2, 1+b^2+b^4, 1+b c+b^2c^2],[ 1+a c+a^2c^2, 1+b c+b^2c^2, 1+c^2+c^2]]=(a-b)^2(b-c)^2(c-a)^2

Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-c)(c-a)