Home
Class 12
MATHS
Without expanding show that |b^2c^2b c b...

Without expanding show that `|b^2c^2b c b+cc^2a^2c a c+a a^2b^2a b a+b|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding show that |b^2c^2 bc b+cc^2a^2 ca c+a a^2b^2a b a+b|=0 .

Without expanding show that |[b^2c^2,b c, b+c],[c^2a^2,c a ,c+a ],[a^2b^2,a b ,a+b]|=0

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2

Using the property of determinants and without expanding, prove that: |-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c^2 .

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Without expanding or evaluating show that |[0 , b-a , c-a] , [a-b , 0 , c-b] , [a-c , b-c , 0]|=0

Without expanding show that, if s= a +b +c, then 2s is a factor of |{:( s+c, a,b),(c, s+a, b),(c,a,s+b):}|

Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)^3