Home
Class 12
MATHS
Prove the following, using properties of...

Prove the following, using properties of determinants: `|a+b+2c a b c b+c+2a b c a c+a+2b|=2(a+b+c)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following, using properties of determinants: |[a+b+2c,a,b],[c,b+c+2a,b],[c,a,c+a+2b]|=2(a+b+c)^3

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

Using properties of determinant prove that |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)

Prove: |[a+b+2c, a, b], [c, b+c+2a, b], [c ,a ,c+a+2b]|=2(a+b+c)^3

Using properties of determinants, Find |(b+c,a,a),(b,c+a,b),(c,c,a+b)|

Using properties of determinants, prove that |{:(,a,b,b+c),(,c,a,c+a),(,b,c,a+b):}|=(a+b+c) (a-c)^2

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .