Home
Class 12
MATHS
Prove that identities: |-b c b^2+b cc^2+...

Prove that identities: `|-b c b^2+b cc^2+b c a^2+a c-a cc^2+a c a^2+a bb^2+a b-a b|=(a b+b c+a c)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

Prove: |(-bc, b^2+b c,c^2+bc), (a^2+a c,-a c,c^2+a c),( a^2+a b,b^2+a b,-a b)|=(a b+b c+c a)^3

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that: |[b, c-a^2,c] ,[a-b^2,a b-c^2,c ],[a-b^2,a ,b-c^2b c-a^2a b-c^2b c-a^2c a-b^2]|=|[a, b, c],[ b ,c ,a],[ c, a ,b]|^2 .

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)^3

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c^2 .

Without expanding show that |b^2c^2 bc b+cc^2a^2 ca c+a a^2b^2a b a+b|=0 .

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2