Home
Class 12
MATHS
Show that |[1,a ,b+c],[1,b, c+a],[1,c ,a...

Show that `|[1,a ,b+c],[1,b, c+a],[1,c ,a+b]|=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a b+b c+c a) .

Show that |[1,b c, a(b+c)],[1,c a, b(c+a)],[1,a b ,c(a+b)]|=0 .

Show that |1a b_c1b c+a1c a+b|=0

By using properties of determinants. Show that: (i) |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a) (ii) |[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)

Using the property of determinants and without expanding, prove that: |[1,b c, a(b+c)],[1,c a, b(c+a)],[1,a b, c(a+b)]|=0

Prove that |[1+a,1, 1], [1,1+b,1], [1, 1, 1+c]|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a+a b

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0