Home
Class 12
MATHS
Using properties of determinant prove th...

Using properties of determinant prove that `|a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .

Using properties of determinants Prove that |{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),( -b,,-a,,a+b+c):}| = 2 (a+b) (b+c) (c+a)

Using properties of determinants, prove that: |{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)

Using properties of determinants, prove that |{:(,a,b,b+c),(,c,a,c+a),(,b,c,a+b):}|=(a+b+c) (a-c)^2

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

Prove that |b+c a a b c+a b c c a+b |