Home
Class 12
MATHS
Show that: |b^2+c^2a b a c b a c^2+a^2b ...

Show that: `|b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c^2 .

Using the property of determinants and without expanding, prove that: |-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)^3

Without expanding show that |b^2c^2 bc b+cc^2a^2 ca c+a a^2b^2a b a+b|=0 .

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)

Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b^2c^2

Without expanding show that |[b^2c^2,b c, b+c],[c^2a^2,c a ,c+a ],[a^2b^2,a b ,a+b]|=0