Home
Class 12
MATHS
Prove that: 2x^2+2b^2+2c^2-2a b-2b c-2c ...

Prove that: `2x^2+2b^2+2c^2-2a b-2b c-2c a=[(a-b)^2+(b-c)^2+(c-a)^2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2a^2+2b^2+2c^2-2a b-2b c-2c a=[(a-b)^2+(b-c)^2+(c-a)^2]

Prove that: 2a^2+2b^2+2c^2-2a b-2b c-2c a=[(a-b)^2+(b-c)^2+(c-a)^2]

Prove that: 2a^2+2b^2+2c^2-2a b-2b c-2c a=(a-b)^2+(b-c)^2+(c-a)^2

Prove that: |[b, c-a^2,c] ,[a-b^2,a b-c^2,c ],[a-b^2,a ,b-c^2b c-a^2a b-c^2b c-a^2c a-b^2]|=|[a, b, c],[ b ,c ,a],[ c, a ,b]|^2 .

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

Prove that [[1+a^2+a^4, 1+a b+a^2b^2 ,1+a c+a^2c^2],[ 1+a b+a^2b^2, 1+b^2+b^4, 1+b c+b^2c^2],[ 1+a c+a^2c^2, 1+b c+b^2c^2, 1+c^2+c^2]]=(a-b)^2(b-c)^2(c-a)^2

Prove that b^2c^2+c^2a^2+a^2b^2> a b cxx(a+b+c)(a ,b ,c >0) .