Home
Class 12
MATHS
Without expanding, prove that |(a+b x,...

Without expanding, prove that `|(a+b x, c+dx, p+q x), (a x+b, c x+d, p x+q),( u, v, w)|=(1-x^2)|(a, c, p),( b, d, q),( u, v, w)|` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Using the property of determinants and without expanding, prove that: |[b+c, q+r, y+z],[ c+a, r+p, z+x],[ a+b, p+q, x+y]|=2|[a, p, x],[ b, q ,y],[ c, r, z]|

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

Using properties of determinants, prove that |(b+c,q+r,y+z),(c+a,r+p,z+x),(c+b,p+q,x+y)|=2|(a,p,x),(b,q,y),(c,r,z)|

Without, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),:}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|

Using the property of determinants and without expanding, prove that: |b+c q+r y+z c+a r+p z+x a+b p+q x+y|=2|a p x b q y c r z|

Show that: |[b+c,c+a ,a+b],[ q+r, r+p, p+q],[ y+z ,z+x,x+y]|=2|[a, b, c],[ p, q, r],[ x, y, z]| .

Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|

Prove that [a b c][u v w]=|[a*u, b*u, c*u], [a*v, b*v, c*v], [a*w, b*w, c*w]|