Home
Class 12
MATHS
Prove that |{:(sin alpha,,cos alpha,,sin...

Prove that `|{:(sin alpha,,cos alpha,,sin(alpha+delta)),(sin beta,,cosbeta,,sin(beta+delta)),(sin gamma ,,cos gamma,,sin (gamma + delta)):}|= 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta))|=0

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

The value of the determinant Delta = |(sin 2 alpha,sin (alpha + beta),sin (alpha + gamma)),(sin (beta + gamma),sin 2 beta,sin (gamma + beta)),((sin gamma + alpha),sin (gamma + beta),sin 2 gamma)| , is

Show that the determinant Delta(x) given by Delta(x) = |{:(sin(x+alpha),cos(x+alpha),a+xsinalpha),(sin(x+beta),cos(x+beta),b+xsinbeta),(sin(x+gamma),cos(x+gamma),c+xsingamma):}| is independent of x .

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|