Home
Class 12
MATHS
Without expanding prove that: |[x+y, y...

Without expanding prove that: `|[x+y, y+z, z+x],[z ,x, y],[1, 1 ,1]|=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding, prove that: |[x, a ,x+a],[ y, b, y+b],[ z, c, z+c]|=0

Without expanding, prove that Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z^2 ,1+p z^3]|=(1+p x y z)(x-y)(y-z)(z-x) .

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(x,a,x+a),(y,b,y+b),(z,c,z+c):}|=0

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0