Home
Class 12
MATHS
Show without expanding at any stage that...

Show without expanding at any stage that: `| (1,cosalpha-sinalpha, cosalpha+sinalpha),(1,cosbeta-sinbeta,cosbeta+sinbeta),(1, cosgamma-singamma,cosgamma+singamma)|`=2 `|(1,cosalpha, sinalpha),(1,cosbeta, sinbeta),(1,cosgamma,singamma)| `

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show without expanding at any stage that: [0,sinalpha-cosalpha],[-sinalpha,0,sinbeta],[cosalphas-sinbeta,0]|=0

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

Evaluate: =|[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|

Evaluate Delta=|0sinalpha-cosalpha-sinalpha0sinbetacosalpha-sinbeta0|

Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta))|=0

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|