Home
Class 12
MATHS
Without expanding the determinant, prove...

Without expanding the determinant, prove that `|a a^2b c bb^2c a cc^2a b|=|1a^2a^3 1b^2b^3 1c^2c^3|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Without expanding show that |b^2c^2 bc b+cc^2a^2 ca c+a a^2b^2a b a+b|=0 .

Using the property of determinants and without expanding, prove that: |-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Without expanding show that |[b^2c^2,b c, b+c],[c^2a^2,c a ,c+a ],[a^2b^2,a b ,a+b]|=0

Without expanding at any stage, prove that |{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|