Home
Class 12
MATHS
If 1/(9!)+1/(10 !)=x/(11 !) , find xdot...

If `1/(9!)+1/(10 !)=x/(11 !)` , find `xdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/(8!)+1/(9!)=x/(10 !), find x

Prove that If (1)/(9!) +(1)/( 10!) =(x)/( 11!) , Find x.

If 27^x=9/(3^x), find xdot

If 27^x=9/(3^x), find xdot

Prove that: 1/(9!)+1/(10 !)+1/(11 !)=(122)/(11 !)

If x-1/x=9, find x+1/xdot

If [x\ \ 1][(1 ,0),(-2, 0)]=O , find xdot

If [1\ -1\ \ x][[0, 1,-1 ],[2 ,1 ,3],[ 1, 1, 1]][[0 ],[1],[ 1]]=0 , find xdot

If ||x-1|-2|=5 then find xdot

If the third term in the expansion of (1/x+""_"x"(log)_(10 x))^5 is 1000 , then find xdot