Home
Class 12
MATHS
Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 ....

Prove that `((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: ((2n)!)/(n !)={1. 3. 5..... (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: n !(n+2)=n !+(n+1)!

Prove that (2n!)/( n!) = 1,3,5 ….( 2n-1) 2^(n)

Prove that : 1+2+3++n=(n(n+1))/2

Prove that n! (n+2) = n! +(n+1)! .

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)

Using mathematical induction, prove that (1)/(1.3.5) + (2)/(3.5.7) +….+(n)/((2n-1)( 2n+1) ( 2n+3)) =( n(n+1))/( 2(2n+1) (2n+3))