Home
Class 12
MATHS
Prove that nPn=2 ^nP(n-2)...

Prove that ` nP_n=2 ^nP_(n-2) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : P(n,n)= 2P (n,n -2)

Prove that ^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)

Prove that .^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

Prove that n! (n+2) = n! +(n+1)! .

Prove that (n !)^2 < n^n(n !)<(2n)! for all positive integers n

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Prove that: sin(n+1)A sin(n+2)A+cos(n+1)A cos(n+2)A=cos A

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n