Home
Class 12
MATHS
Prove that: n !(n+2)=n !+(n+1)!...

Prove that: `n !(n+2)=n !+(n+1)!`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : P(n,n)= 2P (n,n -2)

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that P(n,n) = P(n,n-1)

Prove that (n !)^2 < n^n(n !)<(2n)! for all positive integers n

Prove that (n !)^2 < n^n n! < (2n)! , for all positive integers n.

Prove that: n(n-1)(n-2)....(n-r+1)=(n !)/((n-r)!)

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that [(n+1)//2]^n >(n !)dot

Prove that ((n + 1)/(2))^(n) gt n!