Home
Class 12
MATHS
Find the value of (sqrt(2)+1)^6-(sqrt(2)...

Find the value of `(sqrt(2)+1)^6-(sqrt(2)-1)^6dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand {(x+y)^5+(x-y)^5}dot and hence find the value of {(sqrt(2)+1)^5+(sqrt(2)-1)^5}dot

Find the value of ( sqrt(2) + 1)^(6) + ( sqrt(2) - 1)^(6) and show that the value of ( sqrt(2) + 1)^(6) lies between 197 and 198.

Find (x+1)^6+(x-1)^6 . Hence or otherwise evaluate (sqrt(2)+1)^6+(sqrt(2)-1)^6 .

Find (x+1)^6+(x-1)^6 . Hence evaluate (sqrt(2)+1)^6+(sqrt(2)-1)^6 .

Using binomial theorem, write the value of (a+b)^(6) + (a-b)^(6) and hence find the value of ( sqrt(3) + sqrt(2) )^(6) + ( sqrt(3) - sqrt(2) )^(6) .

If sqrt(2)=1.414 , then find the value of (1)/(2+sqrt(2))

If sqrt(2)=1*4 and sqrt(3)=1*7 , find the value of 1/(sqrt(3)-sqrt(2)) , correct to one place of decimal.

Evaluate the following: \ (sqrt(2)+1)^6+(sqrt(2)-1)^6

Find the value of 6/(sqrt(5)-\ sqrt(3)) , it being given that sqrt(3)=1. 732\ \ a n d\ \ sqrt(5)=2. 236

If a =( 4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))