Home
Class 12
MATHS
If the coefficient of (p + 1) th term in...

If the coefficient of `(p + 1)` th term in the expansion of `(1+ x)^(2n)` be equal to that of the `(p +3)` th term, show that `p=n-1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the coefficient of (3r)^(th) and (r + 2)^(th) terms in the expansion of (1 + x)^(2n) are equal then n =

If the coefficients of (p+1) th and (P+3) th terms in the expansion of (1+x)^(2n) are equal then prove that n=p+1

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1+x)^(2n) are in A.P. then

If the coefficient of (2r+4)th and (r-2)th terms in the expansion of (1+x)^(18) are equal, find r .

Find n if the coefficients of 4th the 13th terms in the expansion of (a+b)^n are equal.

If the coefficients of (2r + 4)th, (r - 2)th terms in the expansion of (1 + x)^18 are equal, find r.

if the coefficient of (2r+1) th term and (r+2) th term in the expansion of (1+x)^(43) are equal then r=?

If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)^(48) are equal,find r .

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1+x)^(2n) are in A.P. Then find the value of n .

If the coefficient of rth term and (r+1)^(th) term in the expansion of (1+x)^(20) are in ratio 1:2 , then r is equal to