Home
Class 12
MATHS
Show that the sequence (p + q)^(2), (p^...

Show that the sequence ` (p + q)^(2), (p^(2) + q^(2)), (p-q)^(2) …` is an A.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that ~(p harr q) -= ( p ^^ ~q) vv(~p ^^q) .

Show that: x p q p x q q q xx-p)(x^2+p x-2q^2) .

If p ,q are real p!=q , then show that the roots of the equation (p-q)x^2+5(p+q)x-2(p-q)=0 are real and unequal.

If each pair of the three equations x^(2) - p_(1)x + q_(1) =0, x^(2) -p_(2)c + q_(2)=0, x^(2)-p_(3)x + q_(3)=0 have common root, prove that, p_(1)^(2)+ p_(2)^(2) + p_(3)^(2) + 4(q_(1)+q_(2)+q_(3)) =2(p_(2)p_(3) + p_(3)p_(1) + p_(1)p_(2))

Subtract : 3p^(3)-5p^(2)q from q^(2)+p^(2)q-4p^(3)

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

If p , qr are real and p!=q , then show that the roots of the equation (p-q)x^2+5(p+q)x-2(p-q=0 are real and unequal.

Using properties of determinants, show that |{:(x, p, q), ( p, x, q), (q,q,x):}|= (x-p) (x ^(2) + px - 2q ^(2))

If the roots of the equation (1-q+p^(2)/2)x^(2) + p(1+q)x+q(q-1) +p^(2)/2=0 are equal, then show that p^(2) = 4q

If p ,q be two A.M. ' s and G be one G.M. between two numbers, then G^2= a) (2p-q)(p-2q) (b) (2p-q)(2q-p) c) (2p-q)(p+2q) (d) none of these