Home
Class 12
MATHS
The sum of the first p , q , r terms of ...

The sum of the first `p , q , r` terms of an A.P. are `a , b , c` respectively. Show that `a/p(q-r)+b/q(r-p)+c/r(p-q)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the first p, q and r terms of an A.P are a, b and c, respectively.Prove that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

Sum of the first p, q and r terms of an A.P are a, b and c, respectively.Prove that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

The sums of first p, q, r terms of an A.P. are a, b, c respectively. Prove that (a)/(p) (q-r) +(b)/(q) (r-p) +(c )/(r) (p-q) =0

If pth,qth and rth terms of an A.P. are a, b, c respectively, then show that (i) a(q-r)+b(r-p)+c(p-q)=0

The p^(t h),q^(t h) and r^(t h) terms of an A.P. are a, b, c, respectively. Show that (q-r)a+(r-p)b+(p-q)c=0 .

If the p^(t h) , q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If pth, qth, and rth terms of an A.P. are a ,b ,c , respectively, then show that (1) a(q-r)+b(r-p)+c(p-q)=0 (2)(a-b)r+(b-c)p+(c-a)q=0

If pth, qth, and rth terms of an A.P. are a ,b ,c , respectively, then show that (a-b)r+(b-c)p+(c-a)q=0

If pth, qth, and rth terms of an A.P. are a ,b ,c , respectively, then show that (a-b)r+(b-c)p+(c-a)q=0

If the p t h ,\ q t h\ a n d\ r t h terms of a G.P. are a ,\ b ,\ c respectively, prove that: a^((q-r))dot^b^((r-p))dotc^((p-q))=1.