Home
Class 12
MATHS
Find the value off sum(k=1)^10(2+3^k)...

Find the value off `sum_(k=1)^10(2+3^k)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals

Evaluate sum_(k=1)^(11)(2+3^k)

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

Find the value of 3sum_(n=1)^(oo) {1/(pi) sum_(k=1)^(oo) cot^(-1)(1+2sqrt(sum_(r=1)^(k)r^(3)))}^(n)

Find the value of the sum_(k=0)^359 k.cos k^@ .

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

The value of sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

Find the sum sum_(k=0)^(10).^(20)C_k .