Home
Class 12
MATHS
If a,b,c,d be in G.P. show that (b-c)^2+...

If a,b,c,d be in G.P. show that `(b-c)^2`+`(c-a)^2`+`(d-b)^2`=`(a-d)^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c ,d be in G.P. , show that (i) (b -c)^(2) + (c - a)^(2) +(d -b)^(2) = (a - d)^(2) (ii) a^(2) + b^(2) + c^(2) , ab + bc + cd , b^(2) + c^(2) + d^(2) are in G.P.

If a ,b ,c ,d are in G.P, then (b-c)^2+(c-a)^2+(d-b)^2 is equal to (a-d)^2 b. (a d)^2 c. (a+d)^2 d. (a//d)^2

If a ,b, c ,d are in G.P, then (b-c)^2+(c-a)^2+(d-b)^2 is equal to

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If a ,b ,c ,d are in G.P. prove that: (a b-c d)/(b^2-c^2)=(a+c)/b

If a ,\ b ,\ c ,\ d are in G.P., show that: (a b+b c+c d)^2=(a^2+b^2+c^2)(b^2+c^2+d^2)

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + d^(2)) are in G.P.

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .