Home
Class 12
MATHS
If p^(t h),\ q^(t h),\ a n d\ r^(t h) te...

If `p^(t h),\ q^(t h),\ a n d\ r^(t h)` terms of an A.P. and G.P. are both `a ,\ b\ a n d\ c` respectively show that `a^(b-c)b^(c-a)c^(a-b)=1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the p^(t h) , q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If the p^(t h) , q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)""b^(r-p)""c^(p-q)=1 .

If the p t h ,\ q t h\ a n d\ r t h terms of a G.P. are a ,\ b ,\ c respectively, prove that: a^((q-r))dot^b^((r-p))dotc^((p-q))=1.

The p^(t h),q^(t h) and r^(t h) terms of an A.P. are a, b, c, respectively. Show that (q-r)a+(r-p)b+(p-q)c=0 .

If (p+q)^(t h)a n d\ (p-q)^(t h) terms of a G.P. re m\ a n d\ n respectively, then write it p t h term.

If pth, qth, and rth terms of an A.P. are a ,b ,c , respectively, then show that (a-b)r+(b-c)p+(c-a)q=0

If pth, qth, and rth terms of an A.P. are a ,b ,c , respectively, then show that (a-b)r+(b-c)p+(c-a)q=0

If p^(t h),\ q^(t h),\ r^(t h)a n d\ s^(t h) terms of an A.P. are in G.P., then show that (p-q),\ (q-r),\ (r-s) are also in G.P.

If the p^(t h)a n d q^(t h) terms of a G.P. are q a n d p respectively, show that (p+q)^(t h) term is ((q^p)/(p^q))^(1/(p-q)) .

If pth,qth and rth terms of an A.P. are a, b, c respectively, then show that (i) a(q-r)+b(r-p)+c(p-q)=0